Exercise 9

(a) Find the slope of the tangent to the curve $y=3+4 x^{2}-2 x^{3}$ at the point where $x=a$.
(b) Find equations of the tangent lines at the points $(1,5)$ and $(2,3)$.
(c) Graph the curve and both tangents on a common screen.

Solution

Part (a)

Start by finding the slope of the tangent line to the curve at $x=a$.

$$
\begin{aligned}
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} & =\lim _{x \rightarrow a} \frac{\left(3+4 x^{2}-2 x^{3}\right)-\left(3+4 a^{2}-2 a^{3}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{4 x^{2}-2 x^{3}-4 a^{2}+2 a^{3}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{4\left(x^{2}-a^{2}\right)-2\left(x^{3}-a^{3}\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\left.4(x+a)(x-a)-2(x-a)\left(x^{2}+a x+a^{2}\right)\right)}{x-a} \\
& =\lim _{x \rightarrow a}\left[4(x+a)-2\left(x^{2}+a x+a^{2}\right)\right] \\
& =4(a+a)-2\left(a^{2}+a \cdot a+a^{2}\right) \\
& =4(2 a)-2\left(3 a^{2}\right) \\
& =8 a-6 a^{2}
\end{aligned}
$$

Part (b)

For the point $(1,5)$, the slope is

$$
m=8(1)-6(1)^{2}=2 .
$$

The equation of the line is then

$$
\begin{gathered}
y-5=2(x-1) \\
y-5=2 x-2 \\
y=2 x+3
\end{gathered}
$$

For the point $(2,3)$, the slope is

$$
m=8(2)-6(2)^{2}=-8
$$

The equation of the line is then

$$
\begin{gathered}
y-3=-8(x-2) \\
y-3=-8 x+16 \\
y=-8 x+19 .
\end{gathered}
$$

Part (c)

Below is a graph of $y=3+4 x^{2}-2 x^{3}$ versus x along with the tangent lines at $x=1$ and $x=2$.

